QMSS Math Camp

Calculus/Analysis

Emile Esmaili

ede2110@columbia.edu

Outline

- Warmup
- Limits
- Differential calculus (single and multivariable)
- Optimization
- Sequences and Series
- Integration

Warmup

Math Basics

- The natural numbers, \mathbb{N} , are $1, 2, 3, \ldots$ and allow us to count.
- The **integer numbers**, \mathbb{Z} , include the natural numbers (positive integers), their negative counterparts, and $0: \ldots, -2, -1, 0, 1, 2, \ldots$
- The rational numbers, \mathbb{Q} , consist of all numbers that can be written as a ratio of two integers, $\frac{n}{m}$, with $m \neq 0$. For example, $-\frac{1}{2}$ and $\frac{123}{4}$
- The real numbers, \mathbb{R} , include all of the rational numbers along with the irrational numbers, such as $\sqrt{2} \approx 1.41421$ or $e \approx 2.71828$, or π .
- The complex numbers, \mathbb{C} , are of the form $a + ib$, where $a, b \in \mathbb{R}$ and where $i^2 = -1$. In the complex numbers, we can solve any polynomial equation. We note $\Re(z) = a$ and $\Im(z) = b$

Remember that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Math basics

- "In" notation: $a \in A$, where a is an element in the set A.
- "For all" notation: $\forall x \in S$, where it means "for all x in the set S."
- "There exists" notation: $\exists x \in S$, where it means "there exists an x in the set S ."
- "R+" notation: \mathbb{R}^+ , where it represents the set of positive real numbers.
- " \mathbb{R}^* " notation: \mathbb{R}^* , where it represents the set of non-zero real numbers.
- Set inclusion notation: $A \subseteq B$, where it means "set A is a subset of set B ."
- Set exclusion notation: $A \setminus B$, where it means "set A excluding the elements in set B ."
- a closed interval contains its frontier points and is noted $[a,b]$
- an open interval does not contain its frontier points and it noted (a,b) or $|a,b|$

Math Basics

The Cartesian product of two elements in sets A and B is denoted as $A \times B$ For instance $(x, y) \in \{\mathbb{R}^+ \times \mathbb{R}\}$ means $x \in \mathbb{R}^+$ and $y \in \mathbb{R}$

Polynomials

Definition: We note $P(x)$ a polynomial in x:

$$
P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0
$$

where:

- $P(x)$ is the polynomial function.
- $a_n, a_{n-1}, \ldots, a_2, a_1, a_0$ are coefficients.
- \bullet x is the variable.
- n is a non-negative integer and represents the highest degree of the polynomial.

Example: The quadratic polynomial is a second-degree polynomial and can be written as:

$$
Q(x) = ax^2 + bx + c
$$

 $Q(x) = 2x^2 - 3x + 1$ is a second-degree polynomial.

Polynomials exercise

Given Expressions: $P(X) = X^3 + 3X^2 - 1, Q(X) = -X^3 - X + 1,$ Calculate $(P+Q)(X)$:

$$
(P+Q)(X) = P(X) + Q(X)
$$

= $X^3 + 3X^2 - 1 + (-X^3 - X + 1)$
= $(X^3 - X^3) + 3X^2 - X + 1 - 1$
= $3X^2 - X$.

Given Expressions: $P(X) = X^2 + X + 1, Q(X) = -X + 1,$ Calculate $(PQ)(X)$: $(PQ)(X) = P(X)Q(X) = (X^2 + X + 1)(-X + 1)$ $= -X^3 + X^2 - X^2 + X - X + 1$ $=-X^3+1.$

Given Expressions: $P(X) = X^2 + X + 1, Q(X) = X^2 + 1,$ Calculate $(P(Q))(X)$: $(P(Q))(X) = (Q(X))^{2} + Q(X) + 1$ $=(X^2+1)^2+(X^2+1)+1$ $= X^4 + 2X^2 + 1 + X^2 + 1 + 1$ $X^4 + 3X^2 + 3.$

- Function: A function $f: A \rightarrow B$ is a rule that assigns to each element $a \in A$ a unique element $b \in B$.
- Injective (One-to-One): A function f is said to be injective if it maps distinct elements in the domain A to distinct elements in the codomain *B*. In other words, $\forall a_1, a_2 \in A$, $f(a_1) = f(a_2) \iff a_1 = a_2$.
- Surjective (Onto): A function f is said to be surjective if, $\forall b \in B, \exists a \in \mathbb{R}$ A such that $f(a) = b$. In other words, the range of f covers the entire codomain B .
- Bijective: A function f is said to be bijective if it is both injective and surjective. It means that f is a one-to-one correspondence between the elements of A and B .

functions

functions

The function $f(x) = x^2$, considered from $\mathbb{R} \to \mathbb{R}$

• Not Surjective: there is no real number x such that $x^2 = -1$. Therefore, $f(x) = x^2$ is not surjective in codomain R

• Not Injective: both
$$
x = 2
$$
 and $x = -2$ result in $f(x) = 4$, so it fails the one-to-one property.

In summary, $f(x) = x^2$ is neither surjective nor injective when considered over the real numbers.

Not injective injective Non monotonous monotonous

exponential

An exponential function is a function of the form: $f(x) = a^x$ where $a > 0$.

- The most common exponential function is: $y = \exp(x) = e^x$
- Product Rule: $e^{x_1} \cdot e^{x_2} = e^{x_1+x_2}$
- Quotient Rule: $\frac{e^{x_1}}{e^{x_2}} = e^{x_1-x_2}$
- Power Rule: $(e^x)^a = e^{x \cdot a}$

Logarithm

the Logarithm function is noted $log(x)$

- $\log_b(x) = y \iff x = b^y$.
- Logarithms to base e are called natural logarithms: $\ln(x)$.
- Product Rule: $\log(x_1 \cdot x_2) = \log(x_1) + \log(x_2)$

• Quotient Rule:
$$
\log\left(\frac{x_1}{x_2}\right) = \log(x_1) - \log(x_2)
$$

• Power Rule:
$$
log(x^a) = a \cdot log(x)
$$

WARNING $ln(x)$ is defined: $\mathbb{R}^{+*} \to \mathbb{R}$ $ln(0)$ does not exist

Logarithm and exponential are inverse

Let f be a function from set A to set B. If there exists a function f^{-1} from set B to set A such that for all x in A and y in B, the following holds:

$$
f^{-1}(f(x)) = x \text{ for all } x \text{ in } A
$$

$$
f(f^{-1}(y)) = y \text{ for all } y \text{ in } B
$$

then f and f^{-1} are inverse functions.

- $\log_a(a^x) = x$; $a^{\log_a(x)} = x$.
- \bullet In particular,
	- $-\ln(e^x) = \log_e(e^x) = x$ $-e^{\ln(x)} = e^{\log_e(x)} = x$

An **upper bound** of *f* is 3 *A* **lower bound** of *f* is -2

Definition: Bounded Function A function $f: A \to \mathbb{R}$ is said to be bounded if $\exists M \in \mathbb{R}$ such that $\forall x \in A$, we have $|f(x)| \leq M$.

Functions

The absolute value of a real number x, denoted as $|x|$, is defined as follows:

$$
|x| = \begin{cases} x, & \text{if } x \ge 0\\ -x, & \text{if } x < 0 \end{cases}
$$

For all $x, y \in \mathbb{R}$:

- 1. $|xy| = |x| \cdot |y|$
- 2. $|x + y| \le |x| + |y|$ (Triangle Inequality)
- 3. $|x + y| \ge ||x| |y||$ (Reverse Triangle Inequality)

Limits

$$
lim_{x \to \infty} \frac{1}{x} = \frac{1}{\text{Big number}} = 0
$$

$$
lim_{x \to 0} \frac{1}{x} = \frac{1}{\text{small number}} = \infty
$$

How to rigorously formalize this?

Limits

$\forall \epsilon > 0, \exists \delta > 0 : \forall x \text{ in } \text{Dom}(f)$, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Let $f(x)$ be a function defined on the interval that contains $x = a$. Then $\lim_{x\to a} f(x) = L$ if for every number $\varepsilon > 0$ there exists some real number $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \varepsilon$

Limits

Indeterminate Forms in Limits:

- $\frac{0}{0}$ Zero divided by zero.
- $\frac{\infty}{\infty}$ Infinity divided by infinity.
- $\bullet\,$ 0 \cdot ∞ Zero times infinity.
- $\bullet \ \infty \infty$ Infinity minus infinity.

Useful limits

For any positive integer $n > 0$, the following limits hold:

$$
\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty
$$

$$
\lim_{x \to +\infty} \frac{x^n}{e^x} = 0
$$

$$
\lim_{x \to +\infty} \frac{\ln(x)}{x^n} = 0
$$

$$
\lim_{x \to 0^+} x^n \ln(x) = 0
$$

Limits quick workout

I.

$$
lim_{x \to \infty} \frac{4x^2 + 3x + 1}{2x^4 + 1}
$$

Solution: The limit at positive or negative infinity of a quotient of polynomials is the limit of the terms with the highest degree. To find it, factorize the expression:

$$
\frac{4x^2 + 3x + 1}{2x^4 + 1} = \frac{4x^2}{2x^4} \cdot \frac{1 + \frac{3}{4x} + \frac{1}{2x^2}}{1 + \frac{1}{2x^4}}
$$

Simplifying further:

$$
\frac{2}{x^2} \cdot \frac{1 + \frac{3}{4x} + \frac{1}{2x^2}}{1 + \frac{1}{2x^4}}
$$

The second fraction approaches 1 as x tends to infinity, and the first fraction approaches 0. Therefore, the requested limit is 0.

Solution: We cannot determine the limit from this form; it's an indeterminate form. We multiply by the conjugate quantity. For $x \geq 1$, we have:

$$
\frac{1}{\sqrt{x+1} - \sqrt{x-1}} = \frac{\sqrt{x+1} + \sqrt{x-1}}{(\sqrt{x+1} + \sqrt{x-1})(\sqrt{x+1} - \sqrt{x-1})}
$$

Simplifying further $(a - b)(a + b) = a^2 - b^2$:

$$
\frac{\sqrt{x+1} + \sqrt{x-1}}{(x+1) - (x-1)} = \frac{\sqrt{x+1} + \sqrt{x-1}}{2}
$$

In this form, it's clear: the limit is ∞

 $\overline{2.}$

Trigonometry

The functions sin and cos are 2π -periodic, meaning $cos(x+2k\pi) = cos(x)$, $k \in \mathbb{Z}$

Moreover:

- \bullet The cosine function is even, and the sine function is odd. This means that for all $x \in \mathbb{R}$, $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$.
- For all $x \in \mathbb{R}$, $\cos(x + \pi) = -\cos(x)$ and $\sin(x + \pi) = -\sin(x)$.
- For all $x \in \mathbb{R}$, $\cos(x) = \cos(2\pi n + x)$ and $\sin(x) = \sin(2\pi n + x)$, where n is an integer.

Some useful identities

- $cos^{2}(x) + sin^{2}(x) = 1$
- $\bullet \ cos(x+y) = \cos(x)\cos(x) \sin(x)\sin(y)$
- $sin(x + y) = sin(x)cos(xy) + cos(x)sin(y)$
- $cos(2x) = 2cos^2(x) 1$

Differential Calculus

Differential Calculus – Single Variable

f

Equation of a line in the plane

Line **L** between **A** and **B has slope:**

Ex: $y = 2x + 0$

Every line in \mathbb{R}^2 has equation $y = a + \beta x$ with β the slope, and a the y-intercept

Differential Calculus – Single Variable

 $f: I \to \mathbb{R}$ and $a \in I$. f is differentiable in a if the following limit exists

$$
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

This limit is the derivative of f at point a, noted $f'(a)$.

 $f'(a)$ also noted $\frac{df}{da}$ where $d(.)$ notes a small change or *delta* in a variable

the derivative tells you how sensitive the output **f(a)** is to the input **a**

Differential Calculus – Single Variable

Let's try this definition to compute a simple derivative

$$
f(x) = x^{2}
$$

\n
$$
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{(x+h)^{2} - x^{2}}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{x^{2} + 2xh + h^{2} - x^{2}}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{2xh + h^{2}}{h}
$$

\n
$$
= \lim_{h \to 0} \frac{h(2x+h)}{h}
$$

\n
$$
= \lim_{h \to 0} (2x + h)
$$

\n
$$
= 2x + 0
$$

\n
$$
= 2x
$$

Derivatives Toolbox O

Product Rule: If u and v are functions of x, then the derivative of their product is given by

$$
(uv)' = u'v + uv'
$$

Quotient Rule: If u and v are functions of x , then the derivative of their quotient is given by

$$
\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad \text{if } v \neq 0
$$

Derivatives Toolbox – Composition

Let I be an interval in $\mathbb{R}, f: I \to \mathbb{R}$, and $g: \mathbb{R} \to \mathbb{R}$ be two functions. We define the composition function $g \circ f$, which maps from I to R, as follows:

 $\forall x \in I, (g \circ f)(x) = g(f(x)).$

Ex:

 $f(x) = 2x + 1$ and $g(x) = x^2 + 3$.

We can then compute the composition function $g \circ f$ as follows:

 $(g \circ f)(x) = g(f(x)) = f(x)^2 + 3 = (2x + 1)^2 + 3$

Derivatives Toolbox O

Let $f:(a,b)\to\mathbb{R}$ and $g:\mathbb{R}\to\mathbb{R}$ be two differentiable functions. Then the composite function $g \circ f : (a, b) \to \mathbb{R}$ is also differentiable, and $\forall x \in (a, b)$, its derivative is given by:

 $(g \circ f)'(x) = g'(f(x)) \cdot f'(x).$

CHAIN RULE (think of Russian dolls)

 $h(x)$

Derivatives - workout

 $f: x \mapsto \sin(3x^2 + \frac{1}{x})$

f is defined and differentiable for all $x \neq 0$. It can be expressed as the composition $f \circ g$ of $f(X) = \sin(X)$ and $g(x) = 3x^2 + \frac{1}{x}$. Its derivative for all $x \neq 0$ is therefore

$$
f'(x) = \sin'(f(x)) \cdot g'(x)
$$

=
$$
\left(6x - \frac{1}{x^2}\right) \cos\left(3x^2 + \frac{1}{x}\right).
$$

 $f(x) = x^x$

$$
f(x) = \exp(\ln(x^x)) = \exp(x \cdot \ln(x))
$$

$$
f'(x) = \exp(x \cdot \ln(x)) \cdot (x \cdot \ln(x))' = \exp(x \cdot \ln(x)) \cdot (\ln(x) + 1) = x^x(\ln(x) + 1)
$$

Derivatives and extrema

Derivatives and extrema

Q: Where can the maximum and minimum values (extrema) of this function be?

 $I = [a,b]$

A: The extrema are necessarily at

- **f(a) and/or f(b)**
- and/or $f'(x)$ when $f'(x) = 0$

Optimization

• If we are in an open set $I = (a,b)$, then we have no guarantee of the existence of global extrema if the function is not bounded

Optimization – no shortcuts

• critical points (**where f'(x) = 0**) are **not necessarily global extrema**

• However at local extrema, we have $f'(x) = 0$

Higher order derivatives

Original Function: $f(x) = \exp(x^2)$

First Derivative: $f'(x) = \exp(x^2)' = 2x \exp(x^2)$

Second Derivative:
$$
f''(x) = (2x \exp(x^2))' = 2x \exp(x^2)' + (2x)' \exp(x^2)
$$

= $4x^2 \exp(x^2) + 2 \exp(x^2)$

Multivariable differential calculus

Example Example

 $f(x) = 2x + 3$

$$
f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^2 + y^4 \sin(ye^x)
$$

$$
g: \mathbb{R}^2 \to \mathbb{R}^3
$$

$$
g(x, y) = \begin{bmatrix} x^2 + y^4 \sin(ye^x) \\ y + x \\ \ln(xy) \end{bmatrix}
$$
Multivariable differential calculus

Let f be a function defined on an open set U in \mathbb{R}^n with values in \mathbb{R}^p . We denote the canonical basis of \mathbb{R}^n as $\{e_1,\ldots,e_n\}$, and we fix $k \in \{1,n\}$. Given $a \in U$, we say that f has a partial derivative with respect to its k-th variable at the point a if the following quotient (where t is a real number)

$$
\frac{f(a+te_k)-f(a)}{t} = \frac{f(a_1,\ldots,a_{k-1},a_k+t,a_{k+1},\ldots,a_n)-f(a)}{t}
$$

has a limit as t approaches 0. When this limit exists, we denote it as $\frac{\partial f}{\partial k}(a)$, or simply $\frac{\partial f}{\partial x_k}(a)$ in the case where the variables are denoted as (x_1, \ldots, x_n) .

For example, $n = 3$ and f depends on three variables x, y, z . stating that it has a partial derivative with respect to its **second variable** at the point $(2,1,0)$ means that the following limit exists:

$$
\lim_{h \to 0} \frac{f(2, 1+h, 0) - f(2, 1, 0)}{h}
$$

Multivariable differential calculus – learn by example

$$
g: \mathbb{R}^2 \mapsto \mathbb{R}^3 \qquad g(x, y) = \begin{pmatrix} x^2 + y^4 \\ \sin(ye^x) \\ x + y \end{pmatrix} = \begin{pmatrix} g1(x, y) \\ g2(x, y) \\ g3(x, y) \end{pmatrix}
$$

$$
\frac{\partial g}{\partial x}(x,y) = \begin{pmatrix} \frac{\partial g1}{\partial x} \\ \frac{\partial g2}{\partial x} \end{pmatrix} = \begin{pmatrix} 2x \\ ye^x \cos(ye^x) \\ 1 \end{pmatrix}
$$

$$
\frac{\partial g}{\partial y}(x,y) = \begin{pmatrix} \frac{\partial}{\partial y}(x^2 + y^4) \\ \frac{\partial}{\partial y}(\sin(ye^x)) \\ \frac{\partial}{\partial y}(x+y) \end{pmatrix} = \begin{pmatrix} 4y^3 \\ e^x \cos(ye^x) \\ 1 \end{pmatrix}
$$

Multivariable differential calculus - Jacobian

Consider a function f defined on an open set U in \mathbb{R}^n with values in \mathbb{R}^p , which has partial derivatives with respect to all its variables at a point $a \in U$. The Jacobian matrix of f at the point a, denoted as $Jf(a)$, is defined as follows:

$$
Jf(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_n}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_p}{\partial x_1}(a) & \frac{\partial f_p}{\partial x_2}(a) & \dots & \frac{\partial f_p}{\partial x_n}(a) \end{pmatrix}
$$

Here, for $1 \leq k \leq p$, the functions f_k are the components of the vector-valued function f .

Multivariable differential calculus

Derivatives w.r.t. all variables for g1

$$
Jg((x,y)) = \begin{pmatrix} \frac{\partial}{\partial x}(x^2 + y^4) & \frac{\partial}{\partial y}(x^2 + y^4) \\ \frac{\partial}{\partial x}(\sin(ye^x)) & \frac{\partial}{\partial y}(\sin(ye^x)) \\ \frac{\partial}{\partial x}(x+y) & \frac{\partial}{\partial y}(x+y) \end{pmatrix} = \begin{pmatrix} -\frac{\partial}{\partial x} & -\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y e^x \cos(y e^x) & e^x \cos(y e^x) \\ 1 & -\frac{\partial}{\partial x} & -\frac{\partial}{\partial y} \end{pmatrix}
$$

Derivatives w.r.t. y for g1, g2, g3

The Jacobian matrix of a function from \mathbb{R}^n to \mathbb{R}^p is an $p \times n$ matrix. In our specific example where you are going from \mathbb{R}^2 to \mathbb{R}^3 , the Jacobian matrix will be a 3×2 matrix.

gradient The vector of all partial derivatives for function mapping to **R** is called the **gradient**

Multivariable differential calculus

Let f be a function defined on an open set U in \mathbb{R}^n with values in \mathbb{R} , which has partial derivatives at the point $a \in \mathbb{R}^n$. The column vector $\nabla f(a)$, defined as:

$$
\nabla f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix}
$$

is called the gradient of f at a .

Hessian matrix

The second-order partial derivative of a function f that maps from \mathbb{R}^n to \mathbb{R} with respect to two variables x_i and x_j is denoted as $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and is defined as:

$$
\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j} \right)
$$

The Hessian matrix of a function f is denoted as Hf and is defined as an $n \times n$ matrix where each element (i, j) is the second-order partial derivative $\frac{\partial^2 f}{\partial x_i \partial x_j}$. It is given by:

$$
Hf = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}
$$

Hessian matrix - example

Let's consider the function $f(x, y) = x^2 + y^2$. To compute the Hessian matrix, we first find the first partial derivatives:

Now, let's calculate the second partial derivatives:

$$
\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x}(2x) = 2
$$

$$
\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y}(2y) = 2
$$

$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y}(2x) = 0
$$

$$
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x}(2y) = 0
$$

Now, we can assemble the Hessian matrix:

$$
H = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
$$

Don't get confused

Table 1: Gradient and Hessian vs. Derivative and Second Derivative

A little bit of vector calculus

Remember the matrix-vector product $A\mathbf{x}$:

$$
A\mathbf{x} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \langle a_1, \mathbf{x} \rangle \\ \langle a_2, \mathbf{x} \rangle \\ \vdots \\ \langle a_n, \mathbf{x} \rangle \end{bmatrix}
$$

What if we want to differentiate $A\mathbf{x}$ with respect to \mathbf{x} , which is a vector and not a scalar anymore.

A little bit of vector calculus

Vector Calculus Rules

In the following rules, x represents a vector. $J_f(a)$ is the Jacobian of f at x.

$$
\frac{d(\mathbf{u}^T \mathbf{v})}{d\mathbf{u}} = \mathbf{v}
$$
\n
$$
\frac{d(A\mathbf{x})}{d\mathbf{x}} = A
$$
\n
$$
\frac{d(\mathbf{x}^T A\mathbf{x})}{d\mathbf{x}} = (A + A^T)\mathbf{x}
$$
\n
$$
\frac{d(||\mathbf{x}||_2^2)}{d\mathbf{x}} = \frac{d(\mathbf{x}^T \mathbf{x})}{d\mathbf{x}} = 2\mathbf{x}
$$
\n
$$
J_{f \circ g}(\mathbf{x}) = J_f(g(\mathbf{x})) \cdot J_g(\mathbf{x})
$$

Equivalence with Calculus Rules

Make connections with the case where x represents a scalar

$$
\frac{d(xy)}{dx} = y
$$

$$
\frac{d(ax)}{dx} = a
$$

$$
\frac{dax^2}{dx} = 2ax
$$

$$
\frac{dx^2}{dx} = 2x
$$

$$
\frac{df(g(x))}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}
$$

Example Linear regression – Loss function

$$
\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta}
$$
\n
$$
\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta}
$$
\n
$$
\begin{bmatrix}\n\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_n\n\end{bmatrix} = \begin{bmatrix}\nx_{11} & x_{12} & \cdots & x_{1p} \\
x_{21} & x_{22} & \cdots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{np}\n\end{bmatrix} \begin{bmatrix}\n\beta_1 \\
\beta_2 \\
\vdots \\
\beta_p\n\end{bmatrix}
$$
\n
$$
L = \sum (y_i - \hat{y}_i)^2
$$
\n
$$
= ||\mathbf{Y} - \hat{\mathbf{Y}}||_2^2
$$
\n
$$
= ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2
$$
\n
$$
\frac{\partial L}{\partial \boldsymbol{\beta}} = -2(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{X} = -2\mathbf{Y}^T \mathbf{X} + 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}
$$

Transpose because we want Jacobian = gradient transposed

Optimization: finding extrema of functions

Convex Sets

Convex Set

A set S is convex if, for any two points x and y in S, the line segment connecting x and y is also contained in S . $\forall x, y \in S, \forall \lambda \in [0, 1]$

$\lambda x + (1 - \lambda) y \in S$

Convex functions

A function $f(x)$ is considered **convex** if, for any two points x_1 and x_2 in its domain and for any t in the interval $[0,1]$, the following inequality holds:

 $f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2)$

A function $f(x)$ is considered **concave** if, for any two points x_1 and x_2 in its domain and for any t in the interval $[0, 1]$, the following inequality holds:

 $f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$

 $f(x)$ $tf(x_1) + (1-t)f(x_2)$ $f(tx_1+(1-t)x_2)$ x_1 $tx_1 + (1-t)x_2$ x_2

Convexity/concavity

Convexity = acceleration Concavity = deceleration

- A function $f(x)$ is considered **convex** if $f''(x) \ge 0, \forall x \in \text{Dom}(f)$
- A function $f(x)$ is considered strictly convex if $f''(x) > 0, \forall x \in \text{Dom}(f)$
- A function $f(x)$ is considered **concave** if $f''(x) \leq 0, \forall x \in \text{Dom}(f)$
- A function $f(x)$ is considered strictly concave if $f''(x) < 0, \forall x \in \text{Dom}(f)$

Hessian matrix and convexity

- A Hessian matrix H is positive semidefinite $(H \succeq 0) \iff$ all eigenvalues of $H_f \geq 0$.
- A Hessian matrix H is positive definite $(H \succ 0) \iff$ all eigenvalues of $H_f > 0.$
- A function f is convex \iff its Hessian matrix H_f is positive semidefinite $(P.S.D.)$
- A function f is strictly convex \iff its Hessian matrix H_f is positive definite (P.D.)

From differential calculus to optimization

Method Let $O \subset X$ be an open set. If $f : O \to \mathbb{R}$ is a differentiable function, then the local and global minimizers of f (if they exist) are among the critical points of f . Furthermore, if f is twice differentiable, then for any critical point x^* of f:

- If Hess $f(x^*)$ is positive definite, then x^* is a local minimizer of f.
- If Hess $f(x^*)$ is not positive semi-definite, then x^* is not a local minimizer of f .
- If Hess $f(x^*)$ is positive semi-definite but not positive definite, then we cannot conclude.

We do not assume any prior knowledge about the convexity of f :

- 1. Solve for x in $\nabla f(x^*) = 0$, where x^* is a critical point.
- 2. Evaluate Hess(f) at the critical point x^* .
- 3. Conclude based on the eigenvalues of $Hess_f(x[*])$:
	- If all eigenvalues are positive, then x^* is a local minimizer of f.
	- If any eigenvalue is negative, then x^* is not a local minimizer of f.
	- If there are zero eigenvalues (indicating semi-definiteness), further analysis is needed to make a conclusion.

Example

$f:\mathbb{R}\rightarrow\mathbb{R}$ $t \mapsto t^3 + 6t^2 - 15t + 1$

The function f is a polynomial function, and therefore it is differentiable, with its derivative f' defined as:

 $f': \mathbb{R} \to \mathbb{R}, \quad t \mapsto 3t^2 + 12t - 15$

1. Find critical points

The critical points of f, if they exist, are real numbers t that satisfy $f'(t) = 0$, which can be expressed as:

 $3t^2 + 12t - 15 = 0$

The discriminant of this quadratic polynomial is $\Delta = b^2 - 4ac$, where $a = 3$, $b = 12$, and $c = -15$:

 $\Delta = 12^2 - 4 \cdot 3 \cdot (-15) = 144 + 180 = 324$

Since $\Delta > 0$, it indicates that f has two distinct critical points, which can be found using the quadratic formula:

$$
t = \frac{-b \pm \sqrt{\Delta}}{2a}
$$

Thus, the correct critical points of f are:

$$
t_1 = \frac{-12 + \sqrt{324}}{2 \cdot 3} = \frac{-12 + 18}{6} = \frac{6}{6} = 1
$$

$$
t_2 = \frac{-12 - \sqrt{324}}{2 \cdot 3} = \frac{-12 - 18}{6} = \frac{-30}{6} = -5
$$

Therefore, the correct critical points of f are $t_1 = 1$ and $t_2 = -5$.

Example

$$
f : \mathbb{R} \to \mathbb{R}
$$

$$
t \mapsto t^3 + 6t^2 - 15t + 1
$$

2. Evaluate second order condition at crit(f) = x^*

> The function f is a polynomial function and is twice differentiable, with its second derivative given by:

$$
\forall t \in \mathbb{R}, \quad f''(t) = 6t + 12
$$

 f has two critical points 1 and -5.

The second derivative $f''(t)$ is positive for all $t > -2$ and negative for all $t < -2$: f is not convex.

• $f(t_1) = f''(-5) < 0$ implies that t_1 is not a local minimizer.

• $f(t_2) = f''(1) > 0$ implies that t_2 is a local minimizer.

Convexity and minimization

For a convex function f, the set of critical points $crit(f) := \{x \mid f'(x) = 0\}$ is equal to the set of global minimizers.

Let $f: X \to \mathbb{R}$ a convex differentiable function. Let $x^* \in X$. Then:

1. x^* is a minimizer of $f \iff \nabla f(x^*) = 0$

2. f has at most one minimizer x^* (unique if it exists)

According to this proposition, every convex function f has the interesting property of having an identity between the following three sets (which may be $empty):$

- the set of its global minimizers arg $\min_x f$;
- the set of its local minimizers;
- the set crit_f of its critical points.

Example

$$
f : \mathbb{R} \to \mathbb{R}
$$

$$
t \mapsto \sqrt{1 + t^2}
$$

$$
f'(t) = \frac{t}{\sqrt{1+t^2}}
$$

$$
f''(t) = \frac{1}{\sqrt{1+t^2}(1+t^2)} > 0
$$

So, f is **strictly convex** its **unique global minimum is its critical point**. Let's find it

$$
f'(t^*) = 0 \iff \frac{t^*}{\sqrt{1 + t^{*2}}} = 0
$$

$$
\iff t^* = 0
$$

The minimizer of f is $t^* = 0$ (argmin f). The minimum value of f is $f(t^*) = 1$.

Example Linear regression – Loss function

$$
\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta}
$$
\n
$$
\hat{\mathbf{Y}} = \mathbf{X}\boldsymbol{\beta}
$$
\n
$$
\begin{bmatrix}\n\hat{y}_1 \\
\hat{y}_2 \\
\vdots \\
\hat{y}_n\n\end{bmatrix} = \begin{bmatrix}\nx_{11} & x_{12} & \cdots & x_{1p} \\
x_{21} & x_{22} & \cdots & x_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n1} & x_{n2} & \cdots & x_{np}\n\end{bmatrix} \begin{bmatrix}\n\beta_1 \\
\beta_2 \\
\vdots \\
\beta_p\n\end{bmatrix}
$$
\n
$$
L = \sum (y_i - \hat{y}_i)^2
$$
\n
$$
= ||\mathbf{Y} - \hat{\mathbf{Y}}||_2^2
$$
\n
$$
= ||\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}||_2^2
$$
\n
$$
\frac{\partial L}{\partial \boldsymbol{\beta}} = -2(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{X} = -2\mathbf{Y}^T \mathbf{X} + 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X}
$$

Transpose because we want Jacobian = gradient transposed

Example Linear regression - Loss function

 \bullet

$$
L = \sum (y_i - \hat{y}_i)^2
$$

$$
= \|Y - \hat{Y}\|_2^2
$$

$$
= \|Y - \mathbf{X}\beta\|_2^2
$$

L is convex, so its critical point β^* is its global minimizer

$$
\frac{\partial L}{\partial \beta} = 0 \iff -2Y^T \mathbf{X} + 2\beta^T \mathbf{X}^T \mathbf{X} = 0
$$

$$
\iff Y^T \mathbf{X} = \beta^T \mathbf{X}^T \mathbf{X}
$$

$$
\iff \beta^T = Y^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1}
$$

$$
\iff \beta = ((\mathbf{X}^T \mathbf{X})^{-1})^T \mathbf{X}^T Y
$$

$$
\iff \beta = (\mathbf{X}^{-1} (\mathbf{X}^T)^{-1})^T \mathbf{X}^T Y
$$

$$
\iff \beta = (\mathbf{X}^{-1} (\mathbf{X}^T)^{-1}) \mathbf{X}^T Y
$$

$$
\iff \beta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T Y
$$

 $||x||_2^2 = \sum_i x_i^2 = x^T x$ $(AB)^{T} = B^{T}A^{T}$ $(A + B)^{T} = A^{T} + B^{T}$ $(AB)^{-1} = B^{-1}A^{-1}$ $(A^T)^{-1} = (A^{-1})^T$ $(A^T)^T = A$

Constrained optimization

Unconstrained:

We want x^* that minimizes $f(x)$ x* can be anywhere in R

Constrained

We want x^* that minimizes $f(x)$ x* is in a specific subset **A: [a;b]**

Here the constraint is *a < x < b* it is an **inequality** constraint

Lagrangian

In optimization, the Lagrangian (\mathcal{L}) is a function used to formulate and solve constrained optimization problems. It is defined as follows for an objective function $f(x)$ subject to equality and inequality constraints: For a minimization problem:

$$
\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i \cdot g_i(x) + \sum_{j=1}^{n} \mu_j \cdot h_j(x)
$$

In this expression:

- \bullet x represents the vector of optimization variables.
- λ_i (Lagrange multipliers) are associated with the equality constraints $g_i(x) = 0.$
- μ_i (Lagrange multipliers) are associated with the inequality constraints $h_i(x) \leq 0.$

Lagrangian example

- Objective Function: We want to maximize the function $f(x, y) = 2x + 3y.$
- Equality Constraint: Our equality constraint is $g(x, y) = x^2 + y^2 = 4$, representing a circle with radius 2 centered at the origin.
- Inequality Constraint: Our inequality constraint is $h(x,y) = x - y \ge -1 \iff h(x,y) = -x + y - 1 \le 0.$

The Lagrangian for this problem, considering both equality and inequality constraints, is defined as:

$$
\mathcal{L}(x, y, \lambda, \mu) = f(x, y) + \lambda \cdot g(x, y) + \mu \cdot h(x, y) \n= 2x + 3y + \lambda(x^2 + y^2 - 4) + \mu(-x + y - 1)
$$

Here, λ and μ are the Lagrange multipliers associated with the equality and inequality constraints, respectively.

KKT conditions

A point x^* satisfies the Karush-Kuhn-Tucker (KKT) conditions if there exist Lagrange multipliers $\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_q$ such that:

$$
\nabla \mathcal{L}(x^*) = \nabla f(x^*) + \sum_{i=1}^p \lambda_i \nabla g_i(x^*) + \sum_{j=1}^q \mu_j \nabla h_j(x^*) = 0
$$

where

- for all $i \in [1, p]$ $g_i(x^*) = 0$
- for all $j \in [1, q]$ $h_j(x^*) \leq 0$
- $\bullet \ \mu_j \geq 0$
- $\mu_j h_j(x^*) = 0.$

 x^* is a critical point of $\mathcal L$ not of f

First order conditions for convex problems

Let $U \subset \mathbb{R}^n$ be an open set. Consider functions $f: U \to \mathbb{R}$ and $h_j: U \to \mathbb{R}$, for $j \in [1, q]$, which are differentiable and convex, and functions $g_i: U \to \mathbb{R}$, for $i \in [1, p]$, which are affine.

We are concerned with the following constrained optimization problem:

Minimize $f(x)$ subject to the constraints $g_i(x) = 0$ for $i \in [1, p]$ (P) $h_j(x) \leq 0$ for $j \in [1, q]$

We say this problem is a **convex optimization problem** as the objective function is convex, the inequality constraints are convex, and the equality constraints are affine.

Idea: For a convex optimization problem, a critical point of \mathcal{L} satisfying the KKT conditions is a solution, under additional conditions...

Sequences and Series

Sequence:

A sequence is an ordered list of numbers denoted as $\{a_n\}$, where a_n represents the *n*-th term of the sequence. In general, a sequence can be defined as a function from the set of natural numbers (N) to the set of real numbers (\mathbb{R}) .

Arithmetic Sequence:

An *arithmetic sequence* is a sequence in which the difference between any two consecutive terms is constant. The n -th term of an arithmetic sequence can be defined as:

$$
u_n = u_0 + nr
$$

where u_0 is the first term, r is the common difference between consecutive terms, and n is the position of the term in the sequence.

Geometric Sequence:

A *geometric sequence* is a sequence in which the ratio of any two consecutive terms is constant. The n -th term of a geometric sequence can be defined as:

$$
u_n = u_0 \cdot r^n
$$

Ex: $u_n = u_0 + 2n$, $u_0 = 3$, $r = 2$, Arithmetic Sequence

 $u_0 = 3$, $u_1 = 5$, $u_2 = 7$, $u_3 = 9$, $u_4 = 11$,...

Ex: $u_n = 2 \cdot 3^n$ $u_0 = 2, r = 3$, Geometric Sequence

 $u_0 = 2$, $u_1 = 6$, $u_2 = 18$, $u_3 = 54$, $u_4 = 162$, ...

The sum of the first n terms of an arithmetic sequence can be calculated using the following formula:

$$
S_n = u_0 + u_1 + ... + u_n = (u_0 + u_n) \frac{n+1}{2}
$$
 n+1 terms in the sum

where S_n is the sum of the first *n* terms

The sum of the first n terms of a geometric sequence can be calculated using the following formula:

$$
S_n = u_0 \frac{1 - r^{n+1}}{1 - r}
$$

A sequence (u_n) converges if there exists $\lambda \in \mathbb{C}$ such that for all $\epsilon > 0$, there exists a rank $N \in \mathbb{N}$ from which the sequence values stay within radius $D(\lambda, \epsilon)$. Formally :

 $\exists \lambda \in \mathbb{C}, \quad \forall \epsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall n \ge N, \quad |u_n - \lambda| < \epsilon$

Convergence of sequence 1/n

Series

Given a sequence (u_n) , we call the series with the general term u_n the sequence:

$$
S_n = u_0 + u_1 + \dots + u_n = \sum_{k=0}^n u_k.
$$

 S_n is called the n-th partial sum. We write $\sum_{k=0}^n u_k$ or simply $\sum u_k$ to refer to the sequence whose n-th term is S_n .

Be careful!! S_n is a sequence, it is a sequence of sums of u_n , which is also a sequence

For instance if u_n has 3 terms

$$
u_n = (u_0, u_1, u_2) = (1, 4, 8)
$$

 $S_n = (S_0, S_1, S_2) = (u_0, u_0 + u_1, u_0 + u_1 + u_2) = (1, 5, 13)$

Summation operator

Properties of the Summation Operator:

1. Linearity:

$$
\sum_{k=m}^{n} (c \cdot a_k) = c \cdot \sum_{k=m}^{n} a_k
$$

for any constant c .

2. Splitting:

$$
\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k
$$

3. Changing the Index:

$$
\sum_{k=m}^{n} a_k = \sum_{j=m}^{n} a_j
$$

This property allows you to use a different index variable.

4. Constant Term:

$$
\sum_{k=m}^{n} c = (n-m+1) \cdot c
$$

when all terms are constant.

5. Telescoping Series:

$$
\sum_{k=m}^{n} (a_k - a_{k+1}) = (a_m - a_{n+1})
$$

This property simplifies some series by canceling out adjacent terms.

Convergence of Series

Let (u_n) be a sequence of complex numbers. We say that $\sum_{k=0}^{\infty} u_k$ is convergent if the sequence (S_n) is convergent. If $\sum_{k=0}^{\infty} u_k$ does not converge, it is said to be divergent. If $\sum_{k=0}^{\infty} u_k$ converges, we write:

$$
\sum_{k=0}^{\infty} u_k = \lim_{n \to \infty} S_n.
$$

Please note that we can ONLY write the symbol $\sum_{k=0}^{\infty} u_k$ if we have already proven that $\sum u_k$ converges!!!
Convergence of Series

Let's show that the series

$$
\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+2)}
$$

converges.

For any positive integer n , we have:

$$
\sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} = \sum_{k=0}^{n} \left(\frac{1}{k+1} - \frac{1}{k+2} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \ldots + \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = 1 - \frac{1}{n+2}.
$$

Hence, the series converges with a sum of

$$
\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+2)} = 1.
$$

Convergence of Series

Proposition [Convergence of the Geometric Series] Let $z \in \mathbb{C}$. Then, the series

$$
\sum_{k=0}^{\infty} z^k
$$

is convergent if and only if $|z| < 1$, and in that case:

$$
\forall z \in \mathbb{C}, \quad |z| < 1, \quad \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}.
$$

Proof:

Assume that $\sum_{k=0}^{\infty} z^k$ is convergent. This implies that z^n approaches zero as *n* goes to infinity, and therefore, $|z|^n$ also approaches zero. Consequently, $|z|$ < 1.

Conversely the sum of a geometric sequence is given by:

$$
\sum_{k=0}^{n} z^{k} = \frac{1 - z^{n+1}}{1 - z}.
$$

Since $|z| < 1$, we have $\lim_{n \to \infty} z^n = 0$. Thus, we obtain:

$$
\forall z \in \mathbb{C}, \quad \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}
$$

Power series

We call an power series any series of functions $\sum_{n=0}^{\infty} f_n$ where $f_n : z \to a_n z^n$ for $z \in \mathbb{C}$ and $a_n \in \mathbb{C}$ for $n \in \mathbb{N}$. The a_n are called the coefficients of the power series. For convenience, we write $\sum_{n=0}^{\infty} a_n z^n$ to represent such a series.

We can use **power series expansion** to express usual functions, for instance

$$
\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}
$$

= 1 + x + $\frac{x^2}{2!}$ + $\frac{x^3}{3!}$ + $\frac{x^4}{4!}$ + ...

The factorial of a non-negative integer n , denoted as $n!$, is defined:

$$
n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1
$$

 $0! = 1.$ For example, 5! is calculated as:

$$
5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120
$$

O-notations

Definition: Let x_0 be a point in R. A neighborhood of x_0 is an open interval containing x_0 . These are often taken in the form $(x_0 - \delta, x_0 + \delta)$ where $\delta > 0$.

Definitions: Let x_0 be a point in R. Suppose f and g are two functions defined in a neighborhood of x_0 , such that the function g only equals zero at the point x_0 . We say that:

• f is little-o of g in the neighborhood of x_0 , denoted as $f = o_{x_0}(g)$, if

f grows slower than g around x0 $\lim_{x\to x_0} \frac{f(x)}{a(x)} = 0.$

• f is equivalent to g in the neighborhood of x_0 , denoted as $f \sim_{x_0} g$, if

f grows at the same rate as g around x0

$$
\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1
$$

O-notations - example

Let $f(x) = (x - 3)^2$, $g(x) = (x - 3)$, and $h(x) = (x - 3)^2 \exp(x - 3)$. 1. f is a little-o of g in the neighborhood of $x_0 = 3$, i.e., $f = o_3(g)$. This is because:

$$
\frac{f(x)}{g(x)} = \frac{(x-3)^2}{(x-3)} = (x-3),
$$

and thus,

$$
\lim_{x \to 3} \frac{f(x)}{g(x)} = 0.
$$

2. f is equivalent to h in the neighborhood of $x_0 = 3$, i.e., $f \sim_3 h$. This is because:

$$
\frac{f(x)}{h(x)} = \frac{(x-3)^2}{(x-3)^2 \exp(x-3)} = \frac{1}{\exp(x-3)},
$$

and thus,

$$
\lim_{x \to 3} \frac{f(x)}{h(x)} = 1.
$$

Taylor Expansion

Definition: Let I be an interval in R, and x_0 be a point or an endpoint of *I*. We say that a function $f: I \to \mathbb{R}$ has a Taylor expansion of order *n* at x_0 if there exist coefficients $a_0, a_1, \ldots, a_n \in \mathbb{R}$ such that, as h tends to zero,

$$
f(x_0 + h) = a_0 + a_1h + a_2h^2 + \ldots + a_nh^n + o_0(h^n).
$$

The polynomial function $h \mapsto \sum_{i=0}^n a_i h^i$ of degree at most *n* is called the principal part of the Taylor expansion of f at x_0 , and the term $o_0(h^n)$ represents the remainder of this expansion.

Theorem: Let $f: I \to \mathbb{R}$ be a smooth function and x_0 a point in the interval I. Then, for any integer n, f has a Taylor expansion of order n at x_0 . This Taylor expansion is given by

$$
f(x_0+h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!}h^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}h^n + o_0(h^n) = \sum_{i=0}^n \frac{f^{(i)}(x_0)}{i!}h^i + o_0(h^n)
$$

Maclaurin series

Taylor expansion is given by

$$
f(x_0+h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)}{2!}h^2 + \ldots + \frac{f^{(n)}(x_0)}{n!}h^n + o_0(h^n) = \sum_{i=0}^n \frac{f^{(i)}(x_0)}{i!}h^i + o_0(h^n).
$$

Take $x_0 = 0, h = x$ and we can approximate $f(x)$ when x is around 0. This is called the MacLaurin Series

$$
f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \ldots + \frac{f^{(n)}(0)}{n!}x^n + o_0(x^n) = \sum_{i=0}^n \frac{f^{(i)}(0)}{i!}x^i + o_0(x^n).
$$

[Animation](https://www.geogebra.org/m/PJnV6X2m)

Maclaurin series

 \bullet For e^x :

 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + o_0(x^n)$

• For $sin(x)$:

$$
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{(2n+1)!}{(2n+1)!} x^{2n+1} + o_0(x^{2n+1}) \qquad \bullet
$$

 \bullet For $\cos(x)$:

$$
\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{(2n)!}{(2n)!} x^{2n} + o_0(x^{2n})
$$

• For $\frac{1}{1-x}$: $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots + x^n + o_0(x^n)$

• For
$$
\frac{1}{1+x}
$$
:
\n
$$
\frac{1}{1+x} = 1 - x + x^2 - x^3 + \ldots + (-1)^n x^n + o_0(x^n)
$$

• For
$$
\ln(1+x)
$$
:

$$
\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^{n+1}\frac{x^n}{n} + o_0(x^n)
$$

• For $(1+x)^{\alpha}$:

$$
(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + o_0(x^n)
$$

Animation

(Riemann) Integration

Definition: The integral of a step function is defined as the difference between, on the one hand, the sum of the areas of the rectangles formed by the step function that are located above the x-axis, and on the other hand, the sum of the areas of the rectangles located below the x-axis. In other words, if f is a step function associated with the subdivision $\sigma = \{x_0 < x_1 < \ldots < x_n\}$ of [a, b], it is given by

$$
\int_{a}^{b} f = \sum_{i=1}^{n} (x_i - x_{i-1}) f(m_i)
$$

where $m_i = \frac{x_{i-1} + x_i}{2}$ for $i = 1, ..., n$.

So, it represents the area under the curve if the step function takes only positive values. Otherwise, it is an "algebraic" area: we count positively the area above the x-axis and negatively the area below it.

Interruption: infimum and supremum

What is the minimum value of interval A = (-1;1)?

Is it -1 ? *NO* Is it -0.999, -0.9999, -0.999999?

For open sets, **we extend the idea of the minimum and maximum elements to inf. and sup**.

 $Inf(A) = -1$ $Sup(A) = 1$

Interruption: infimum and supremum

• Supremum (sup A): Every non-empty and bounded subset A of R has a least upper bound, denoted as $\sup A$. This is the smallest of the upper bounds, meaning it is the unique real number satisfying the following two properties:

- For all $a \in A$, $a \leq \sup A$.

- For every $\epsilon > 0$, there exists $a \in A$ such that $a > \sup A \epsilon$.
- Infimum (inf A): Every non-empty and bounded subset A of $\mathbb R$ has a greatest lower bound, denoted as $\inf A$. This is the largest of the lower bounds, meaning it is the unique real number satisfying the following two properties:
	- For all $a \in A$, inf $A \leq a$.
	- For every $\epsilon > 0$, there exists $a \in A$ such that inf $A + \epsilon > a$.

 $Sup/Inf(A)$ is 'sticky' to A

Riemann Integration

We can consider step functions ϕ whose graphs are below that of $f: \phi \leq f$. Each of these functions ϕ has an integral, defined as an algebraic area, as described in the previous section. One way to conceive the integral of f is that it should be the largest area obtained in this manner. More precisely, we define the lower integral of f using an upper bound:

$$
I_{a,b}^-(f) = \sup \left\{ \int_a^b \phi \mid \phi \in E([a,b]), \phi \le f \right\}
$$

We refer to it as the lower integral because we approximate the graph of f from below, using functions $\phi \leq f$.

Riemann Integration

We can consider step functions ψ whose graphs are above that of $f: \psi \leq f$. Each of these functions ψ has an integral, defined as an algebraic area, as described in the previous section. One way to conceive the integral of f is that it should be the smallest area obtained in this manner. More precisely, we define the upper integral of f using an lower bound:

$$
I_{a,b}^+(f) = \inf \left\{ \int_a^b \psi \mid \psi \in E([a,b]), \psi \ge f \right\}
$$

We refer to it as the upper integral because we approximate the graph of f from above, using functions $\psi \geq f$.

Riemann Integration

Let f be a bounded function on [a, b]. We say that f is integrable over [a, b] when $I_{a,b}^{+}(f) = I_{a,b}^{-}(f)$. In this case, we denote the common value of $I_{a,b}^{+}(f)$ and $I_{a,b}^{-}(f)$ as $\int_{a}^{b} f$.

Fundamental theorem of calculus

First Fundamental Theorem of Calculus:

Let $f(x)$ be a continuous function on a closed interval [a, b]. If $F(x)$ is any antiderivative of $f(x)$ on [a, b], then:

$$
\int_{a}^{b} f(x) dx = F(b) - F(a)
$$

In simpler terms, this theorem states that if you can find an antiderivative $F(x)$ of a continuous function $f(x)$, then you can calculate the definite integral of $f(x)$ over the interval [a, b] by evaluating $F(x)$ at the upper and lower limits of integration and subtracting the results.

Antiderivative $F(x)$ means $F'(x) = f(x)$

For
$$
f(x) = x
$$
, the antiderivative $F(x)$ is $\frac{x^2}{2}$

Integration = sum in a continuous setting

• Linearity: The integral operator is linear, meaning that for constants c_1 and c_2 and functions $f(x)$ and $g(x)$, we have:

$$
\int [c_1 f(x) + c_2 g(x)] dx = c_1 \int f(x) dx + c_2 \int g(x) dx
$$

• **Additivity:** For any three numbers a, b, and c within the interval $[a, b]$, we have: $\begin{array}{ccc}\n\hline\n\end{array}$ $\begin{array}{ccc}\n\hline\n\end{array}$ $\begin{array}{ccc}\n\hline\n\end{array}$ $\begin{array}{ccc}\n\hline\n\end{array}$

$$
\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx
$$

• Symmetry: If $f(x)$ is an even function $(f(-x) = f(x))$, then for any interval symmetric about the origin $([-a, a])$, the integral simplifies to:

$$
\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx
$$

$Integration-example$

Example: Find the integral of the function $f(x) = 2xe^{x^2}$ on the closed interval $[0,1]$.

We want to calculate:

$$
\int_0^1 2xe^{x^2} dx
$$

To find this integral, we can apply the First Fundamental Theorem of Calculus. First, we need to find the antiderivative of $2xe^{x^2}$.
The antiderivative of $2xe^{x^2}$ is:

$$
\int 2xe^{x^2} dx = e^{x^2} + C
$$

Now, we can apply the Fundamental Theorem:

$$
\int_0^1 2xe^{x^2} dx = \left[e^{x^2}\right]_0^1 = e^{1^2} - e^{0^2}
$$

You can evaluate this numerically to find the value of the integral over the closed interval $[0,1]$.

Double integrals

$$
\int_{0}^{1} \int_{0}^{2} (x + 2y) \, dy \, dx
$$

= $\int_{0}^{1} \left\{ \int_{0}^{2} (x + 2y) \, dy \right\} dx$
= $\int_{0}^{1} \left[xy + y^{2} \right]_{0}^{2} dx$ (Integrate with respect to y)
= $\int_{0}^{1} (2x + 4) \, dx$ (Evaluate the limits)
= $\left[x^{2} + 4x \right]_{0}^{1}$ (Integrate with respect to x)
= $(1^{2} + 4 \cdot 1) - (0^{2} + 4 \cdot 0)$
= $1 + 4$
= 5

Integration by Parts

Ideally, f has a simple integral, g a simple derivative

So that **fg'** has a simpler integral than **f'g**

$$
\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx
$$

Let
$$
T > 0
$$
 be a real number. Let's compute

 $\int_0^T t e^{-t} dt.$

To do this, we set $g(t) = t$ (differentiating will decrease the degree) and $f(t) =$ e^{-t} . Then, we have $f'(t) = -e^{-t}$ and $g'(t) = 1$. We obtain

$$
\int_0^T t e^{-t} dt = \left[t e^{-t} \right]_0^T - \int_0^T (-e^{-t}) dt
$$

Computing $[te^{-t}]_0^T = Te^{-T}$, we are left with

$$
\int_0^T (-e^{-t}) dt = [e^{-t}]_0^T = e^{-T} - 1
$$

In conclusion, we have

$$
\int_0^T t e^{-t} dt = 1 - (T + 1)e^{-T}
$$

Antiderivative of ln(x)

$$
\int \ln(x) \, dx = \int \ln(x) \cdot 1 \, dx
$$

We pose $f'(x) = 1$, $g(x) = \ln(x)$. Then $f(x) = x$, $g'(x) = \frac{1}{x}$ using IBP:

$$
\int \ln(x) dx = [x \ln(x)] - \int \frac{1}{x} \cdot x dx
$$

$$
= x \ln(x) - x + C
$$

Change of variable (u-sub)

Change of Variables: Under certain conditions, you can perform a change of variables to simplify an integral. For example, if g and f are differentiable functions with continuous derivatives, then:

$$
\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du
$$

Consider the integral:

$$
\int_0^2 x \cos(x^2 + 1) \, dx.
$$

Make the substitution $u = x^2 + 1$ to obtain $du = 2x dx$, meaning $dx = \frac{1}{2x} du$. Therefore,

$$
\int_0^2 x \cos(x^2 + 1) \, dx = \int_1^5 x \cos(u) \frac{1}{2x} \, du = \frac{1}{2} \int_1^5 \cos(u) \, du = \frac{1}{2} (\sin(5) - \sin(1)).
$$