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Abstract—In this paper we propose a novel approach to
music composition by formulating it as an unconditional image
generation problem. We evaluate the performance of training a
DCGAN and a DDPM model on a curated dataset of sheet music
to assess the capabilities of machines to learn music composition.
The results are promising in our view and show that future work
in this domain could lead to very interesting advances

Index Terms—GAN, DDPM, Unconditional Image Generation,
Music Generation, Computer Vision

I. INTRODUCTION

Music Composition is an artistic task that has been seen as
inherently human for centuries. With recent advances in the
domain of Generative models, more and more artistic fields
have been challenged by state-of-the-art Al models. In music,
this mainly through audio generation. We take a rather novel
approach to this problem by formulating music composition
as an image generation problem, rather than focusing on
audio. The rationale here is that unlike handwriting, music
compositions, and most notably sheet music, have a very
streamlined, rigorous and invariant structure, that we believe
can be learned from a machine if trained properly.

II. RELATED WORK

There has been prolific research in the domain of music
generation through audio, mostly through the usage of Gener-
ative Adversarial Networks (GANSs), using the seminal work
of Goodfellow et al. [1], including the MuseGAN architecture
of Dong et al. [2]. On the other hand, Generative vision models
have boomed ever since, and GANs are now being challenged
by the denoising diffusion probabilistic models (DDPM) ar-
chitecture for unconditional image generation proposed by
Ho et al. [3]. However, uses of pure Vision approaches to
the music composition problem have been very sparse in the
literature. That is why we believe applying state of the art
method like GANs or DDPMs could lead to interesting results
for our problem.

III. METHODS
A. Data

The data consists of a sample of 9427 sheet music scores for
video games found online, downloaded as PDFs and converted
manually to images by us. We then removed images that we
deemed problematic (blank pages, or sheets with only one
line). We made this propietary dataset available online for

anyone to use here.

Please note that we do not use data augmentation techniques
like flipping the images for instance as we believe they
will compromise the algorithm’s ability to learn the inherent
structure of the sheet music.
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Figure 1. a sheet music from our dataset

B. Models

1) DCGAN (baseline): Our baseline model is the DCGAN,
using the architecture proposed by Radford et al. [4]. We
define the Generator G and the Discriminator D to compete
in a minimax two-player game. D and G play a minimax
game in which D tries to maximize the probability it cor-
rectly classifies reals and fakes (logD(z)), and G tries to
minimize the probability that D will predict its outputs are
fake (log(1 — D(G(2)))).
the GAN loss function is:

mcinmng(D, G) = Eonpioia(a) [logD(x)] (D
FE.np. () [log(1 = D(G(2)))] 2)

The model architecture we used was similar to the original
one from the paper.



2) DDPM: We trained a DDPM using the formulation of
Ho et al. [3] but with the improvement suggested by Nichol
and Dhariwal [5] to include a cosine noise scheduler instead
of a linear one, with the following formula in terms of the
variance schedule (; at time ¢ :

T
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The number of steps is 7' = 1000 to be consistent with the
literature. Due to technical constraints we resize images to be
128x128 before normalizing them.

We use the DDPM cosine scheduler in combination with
the U-net to denoise the encoded image. Our U-net uses
self-attention, with 2 ResNet layers per block, and channels
that double as the dimensions shrink. We use the AdamW
optimizer with weight decay. the learning rate starts at 104,
with 1 gradient accumulation step. The batch size is 16 and
we use 500 warm-up steps for the cosine scheduler

Table 1
U-NET ARCHITECTURE FOR THE DDPM (IN-OUT-CHANNELS)

Upsampling block
ResNet 64-128-128
ResNet 32-64-128
ResNet 16-32-256
ResNet 8-16-256
ResNet 4-8-512
self-attention
ResNet 2-4-512

Downsampling block
ResNet 128-64-128
ResNet 64-32-128
ResNet 32-16-256

ResNet 16-8-256
ResNet 8-4-512
self-attention
ResNet 4-2-512

IV. EXPERIMENTS

A. DCGAN

We train the DCGAN model for 20 epochs. Because of
the low resolution of the images, the model is not scalable,
unless we apply super-resolution to it. We tried to use a
128x128 variant of the 64x64 DCGAN formulation but the
discriminator completely oulearns the generator. We decided
to focus on DDPMs instead

B. DDPM

We train the DDPM for 50 epochs using the aforementioned
hyperparameters. Even though the resolution bottlenecks the
results, we find them promising. We do tend to notice a
‘renoising’ effect after 30 epochs, leading us to question the
nature of the loss function used by Ho et al. [3], and Nichol
and Dhariwal [5].

Sheet music looks very 'noisy’, and we believe that L2 loss
is not harsh enough to penalize small errors, which might be
crucial to the learning process in our case. We decide to modify
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Figure 3. DCGAN Loss generated images
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the DDPM algorithm to use L1 loss or its smooth variants like
Huber loss:

[ sw—-9?  ifly-9l<9
Ls = {5((; —§) — %6) otherwise ®)

We retrain the model for 50 epochs, which takes approx-
imately 9 hours on a NVIDIA V-100 GPU. The results are
better but we still tend to see re-noising in the later epochs as
seen in figure 6.

A last experiment we wished to try is using super-resolution

on our output images. We used a pre-trained latent stable
diffusion model as pioneered by Rombach et al. [6] that
performs 4x upscaling.
The result, shown in figure 8, is disappointing as the upscaling
looks cartoonish and loses some of the information given by
our model output. We still believe it is an interesting avenue
to explore.
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Figure 6. DDPM with L2 loss results - epoch 50

V. CONCLUSION

We have used state-of-the-art image generation techniques,
namely DCGANs and DDPMs, to tackle the problem of sheet
music composition by Al Our findings show diffusion models
are able to learn the structure inherent to sheet music but
because of the low-resolution capabilities of the algorithms
and GPU memory constraints, the images produced are un-
satisfying, even when passed onto a super-resolution latent
diffusion model. We believe however that exploring higher-
resolution training or adding a super-resolution network on
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Figure 8.
Down: upscaled image using latent stable diffusiom
Up: fake image from our model

top of our current architecture could lead to substantial results
and pave the way for Al-generated music scriptures.
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