Tropical Algebra for Value Function Approximation Theory and Implementation

Emile Esmaili

Reinforcement Learning - 6892 - Prof. Javad Ghaderi

- [Motivation and Scope](#page-2-0)
- [Primer on Tropical Algebra](#page-8-0)
- [Max-Plus Approximation of the Value Function](#page-12-0)
	- **[Implementations](#page-22-0)**

Table of Contents

1 [Motivation and Scope](#page-2-0)

- [Primer on Tropical Algebra](#page-8-0)
- [Max-Plus Approximation of the Value Function](#page-12-0)

[Implementations](#page-22-0)

4 D F

 $2Q$

This project is

- Part theory and details on existing literature with proofs
- Part implementation of papers' results

4 D F

∍

- We look into the issue of control problems with large deterministic state-spaces (ie robotics) Consider a continuous-state MDP (discrete-time, discrete-control). We
- want to discretize it into a finite MDP (discrete-state), e.g. to approximate the value function with value iteration.

Problem: A naive discretization has no notion of spatial proximity, hence we would need a very large state-discretization, not even fitting in memory for problems of moderate dimensions.

We consider a deterministic, time-homogeneous, infinite-horizon, discounted MDP defined by:

- \bullet a state space S,
- \bullet an action space A ,
- a bounded reward function $r : S \times A \rightarrow [-R, R]$,
- dynamics $\phi(\cdot) : S \times A \rightarrow S$,
- and a discount factor $0 \leq \gamma \leq 1$.

We make the following assumptions:

- $\textcolor{black}{\bullet}$ The state space S is a bounded subset of \mathbb{R}^d $(d\geq 1).$
- \bullet The action space A is finite.

Value Iteration

The optimal value function $V^*:S\to\mathbb{R}$ corresponds to an optimal policy $\pi^*: \mathcal{S} \rightarrow \mathcal{A}$ maximizing the cumulative discounted reward. The greedy policy π corresponding to a value function V is then:

$$
\pi(s) \in \arg\max_{a \in A} \left[r(s,a) + \gamma V(\phi_a(s)) \right].
$$

The value iteration algorithm consists in computing V^* as the unique fixed point of the Bellman operator $\,\mathcal{T}:\mathbb{R}^S\rightarrow\mathbb{R}^S\hskip-1pt:\,\,$

$$
TV(s) := \max_{a \in A} \left[r(s, a) + \gamma V(\phi_a(s)) \right].
$$

The value iteration algorithm iteratively computes the recursion $V_{k+1} = T(V_k)$ that converges to V^* , with a linear rate since T is strictly contractive with factor $\gamma < 1$. However, if S is a finite set, it requires $O(|A| \cdot |S|)$ computations and the storage of $O(|S|)$ values of V_k at each step.

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

We have seen a regular linear parameterization of the value function, as

$$
V(s) = \sum_{w \in W} \alpha_w \cdot w(s)
$$

where W is a set of basis functions $w : S \to \mathbb{R}$.

Idea: What if we use a 'tropical' or **max-plus** linear approximation instead?

[Motivation and Scope](#page-2-0)

[Max-Plus Approximation of the Value Function](#page-12-0)

[Implementations](#page-22-0)

4 D F

In an exotic country, children are taught that:

"
$$
a + b
$$
" = max(*a*, *b*) ; " $a \times b$ " = $a + b$
So

• $"2 + 3" = 3$ • $"2 \times 3" = 5$ • $"5/2" = 3$

"23" = "2 × 2 × 2" = 6 √

$$
\bullet \text{ ''}\sqrt{-1} \text{''} = -0.5
$$

4 D F

э

 QQ

Primer on Tropical Algebra

The max-plus semiring $(\mathbb{R}_{\text{max}}, \oplus, \otimes)$ is the set $\mathbb{R} \cup \{-\infty\}$, equipped with the two operations:

$$
x \oplus y = \max\{x, y\}
$$

$$
x \otimes y = x + y
$$

The relations \oplus and \otimes are associative and commutative. The 0 element for \oplus is $-\infty$, which is such that:

$$
x\oplus(-\infty)=\max\{x,-\infty\}=x
$$

The 1 element for \otimes is 0, such that $x \otimes 0 = x + 0 = x$. All non-zero elements (i.e., different from $-\infty$) have an inverse for \otimes , equal to $-x$ (hence making the structure a semifield): An interesting property is that the semiring is idempotent:

$$
x\oplus x=\max\{x,x\}=x
$$

 QQQ

Max-Plus Linear Algebra

Consider the following linear system, with unknown $z = (x, y) \in \mathbb{R}^2$:

$$
\begin{pmatrix} 1 & 2 \ -4 & 1 \end{pmatrix} \otimes \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
$$

Unrolling the max-plus notations, this is equivalent to the following system of equations:

$$
\max\{x, y+2\}=1
$$

$$
\max\{x-4, y\}=2
$$

The first line is equivalent to:

$$
(x = 1
$$
 and $y + 2 \le 1$) or $(x \le 1$ and $y + 2 = 1)$

with a similar condition for the second line:

$$
(x-4=2
$$
 and $y \le 2$) or $(x-4 \le 2$ and $y = 2$).

[Motivation and Scope](#page-2-0)

[Primer on Tropical Algebra](#page-8-0)

3 [Max-Plus Approximation of the Value Function](#page-12-0)

[Implementations](#page-22-0)

[Extensions and Concluding remarks](#page-31-0)

4 0 8

The structure of the Bellman operator $\,\mathcal{T}:\mathbb{R}^S\rightarrow\mathbb{R}^S$ is naturally compatible with max-plus algebra. It is max-plus additive and homogeneous:

Bellman backup TV(s) is MaxPlus linear

Proof:

$$
T(V \oplus V_0) = T(max{V, V_0}) = max{TV, TV_0} = TV \oplus TV_0
$$

$$
T(c \otimes V) = T(c + V) = \gamma c + TV = c^{\otimes \gamma} TV.
$$

Let W be a finite dictionary of functions $w : S \to \mathbb{R}$. For $\alpha \in \mathbb{R}^W$, we define the max-plus linear combinations:

$$
V(s) = \bigoplus_{w \in W} \alpha(w) \otimes w(s) = \max_{w \in W} [\alpha(w) + w(s)].
$$

and we write it more compactly:

$$
V=W\alpha.
$$

We can also define a dot product:

$$
\forall z, w \in \mathbb{R}^S, \langle z, w \rangle := \sup_{s \in S} [z(s) + w(s)]
$$

Emile Esmaili (Columbia University) [Tropical Algebra for RL](#page-0-0) October 27, 2023 15 / 34

Idea from Bach [\[1\]](#page-33-1) : the value function can be approximated by a max-plus linear combination of functions in W .

The functions $w(s)$ form a **basis** in the max-plus linear approximation of V Most common dictionaries of functions:

Smooth: $w_i(s) = -c\|s - s_i\|^2$

• Lipschitz:
$$
w_i(s) = -c ||s - s_i||
$$

$$
\bullet\ \textsf{Indicator}\textsf{:}\ \ w_i(s)=\begin{cases}0\quad \ \ \text{if } s\in A(w_i)\\ -\infty\quad \ \text{otherwise}\end{cases}
$$

• Soft indicator: $w_i(s) = -cdist(s, A(w_i))^2$

Smooth or Lipschitz basis functions are used to approximate value functions of the same regularity, controlled by c . (Akian et al. [\[2\]](#page-33-2))

Piecewise constant value functions are good candidates for a discretization. They are used in Bach [\[1\]](#page-33-1) to cluster similar states in discrete MDPs.

 QQ

Define the following four operators:

\n- \n
$$
W: \mathbb{R}^W \to \mathbb{R}^S
$$
, \n $W\alpha(s) := \max_{w \in W} [\alpha(w) + w(s)]$ \n
\n- \n $W^+ : \mathbb{R}^S \to \mathbb{R}^W$, \n $W^+V(w) := \inf_{s \in S} [V(s) - w(s)]$ \n
\n- \n $W^\top : \mathbb{R}^S \to \mathbb{R}^W$, \n $W^\top V(w) := \sup_{s \in S} [V(s) + w(s)]$ \n
\n

$$
\bullet \ \ W^{\top +} : \mathbb{R}^W \to \mathbb{R}^S, \ W^{\top +} \alpha(s) := \min_{w \in W} [\alpha(w) - w(s)]
$$

4 D F

 299

э

W^+ acts like a pseudo inverse

We have, for the pointwise partial order on $\mathbb{R}^{\mathcal{S}},$ $W\alpha \leq V \iff \alpha \leq W^+V$, that is:

$$
\forall s \in S, W\alpha(s) \leq V(s) \n\Leftrightarrow \forall (s, w) \in S \times W, \alpha(w) + w(s) \leq V(s) \n\Leftrightarrow \forall (s, w) \in S \times W, \alpha(w) \leq V(s) - w(s) \n\Leftrightarrow \forall w \in W, \alpha(w) \leq W^+ V(w).
$$

As shown in Akian et al. [\[2\]](#page-33-2), $WW^+ = W$ and $W^+W^+ = W^+$ Therefore W^+ plays a role of pseudo-inverse, and WW^+ the role of projection on the image of W .

Idea: Projection on the range of W

Replace $V_{t+1} = TV_t$ by $V_{t+1} = WW^+V_t$

If we consider V_t of the form $V_t = W\alpha_t$, then $V_{t+1} = W\alpha_{t+1}$ with

$$
\alpha_{t+1}(w) = W^+ \mathit{TW}\alpha_t(w) = \min_{s \in S} \{ \max_{w' \in W} \gamma \alpha_t(w') + \mathit{Tw}'(s) \} - w(s)
$$

Which comes from Max-plus homogeneity of $T(W\alpha)$

$$
T(W\alpha) = T(\bigoplus w \otimes \alpha) = \bigoplus \alpha \gamma + Tw = \max_{w} \gamma \alpha + Tw
$$

This requires to solve at each iteration an infimum problem over S, which is computationally expensive as $O(|S| \cdot |W|)$, which is typically worse than classical value iteration. Not good!

 Ω

イロト イ母 トイヨ トイヨ トー

Variational Trick

Better Idea from [\[1\]](#page-33-1): Use a variational formulation with another basis of functions Z . Define, similarly to what we did with W :

•
$$
Z^{\top}V(z) = \max_{s \in S} V(s) + z(s)
$$
.

•
$$
Z^{\top+}\beta(s) = \min_{z \in Z} \beta(z) - z(s).
$$

The operator $Z^{\top +}Z^{\top}$ on functions from S to $\mathbb R$ is the projection on the image of $Z^{\top +}.$

The value iteration recursion $V_{k+1} = TV_k$ is replaced by a variational formulation:

$$
\langle z, V_{k+1} \rangle = \langle z, \mathit{TV}_k \rangle \quad \forall z \in Z,
$$

of which we consider the maximal solution in span(W) [\[2\]](#page-33-2):

$$
V_{k+1} = WW^+ Z^{\top +} Z^+ T V_k.
$$

If $V_k = W \alpha_k$, we have the following recursion:

$$
\alpha_{k+1} = W^+ Z^{\top +} Z^{\top} \mathit{TW} \alpha_k.
$$

Reduced Value Iteration

The operator $W^+ Z^{\top +} Z^{\top} \mathcal{TW} : \mathbb{R}^\mathbb{W} \to \mathbb{R}^\mathbb{W}$ decomposes as $M \circ K$ with $\mathcal{K} = \mathcal{Z}^\top \mathcal{W} : \mathbb{R}^\mathbb{W} \to \mathbb{R}^\mathbb{Z}$ $M = W^+ Z^{\top +} : \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{W}}$

The recursion can be reformulated :

$$
\beta_{k+1}(z) = K\alpha_k(z) = \sup_{s \in S} \left[z(s) + \max_{w \in W} \left[\gamma \alpha_k(w) + T_w(s) \right] \right]
$$

\n
$$
= \max_{w \in W} \left[\gamma \alpha_k(w) + \langle z, Tw \rangle \right]
$$

\n
$$
\alpha_{k+1}(w) = M\beta_{k+1}(w) = \inf_{s \in S} \left[-w(s) + \min_{z \in Z} \left[\beta_{k+1}(z) - z(s) \right] \right]
$$

\n
$$
= \min_{z \in Z} [\beta_{k+1}(z) - \langle z, w \rangle]
$$

We can then recover the optimal Value function as

$$
V^* = W\alpha
$$

Emile Esmaili (Columbia University) [Tropical Algebra for RL](#page-0-0) Corober 27, 2023 21/34

 QQ

Proposition 1 from Bach [\[1\]](#page-33-1)

The operator $\hat{\mathcal{T}} = W^+ Z^{\top +} Z^{\top} \mathcal{T}$ is γ -contractive and has a unique fixed point V_{∞} . If $||WW^+V^*-V^*||_\infty \leq \eta$ and $||Z^\top Z^\top V^* - V^*||_\infty \leq \eta$, then $||V_\infty - V^*||_\infty \leq \frac{2\eta}{1-\eta}$ $rac{2\eta}{1-\gamma}$.

 QQ

[Motivation and Scope](#page-2-0)

[Primer on Tropical Algebra](#page-8-0)

[Max-Plus Approximation of the Value Function](#page-12-0)

[Implementations](#page-22-0)

[Extensions and Concluding remarks](#page-31-0)

4 D F

• We reproduce and implement the results from Bach [\[1\]](#page-33-1)

• and add other illustrations

4 **ED** ∢母 э

 QQ

First in a 1D state-space.

We reproduce the results of [\[1\]](#page-33-1) using the following setup:

- $|S| = 2^8$, $|A| = 2$, Discretized MDP from continuous control problem
- discount factor for continous control problem $\eta = 0.5$, for MDP $\gamma = \eta/|S|$
- convex and non-convex reward functions
- convex reward is given by $R(x) = |(1-3x)\cdot {\bf 1}_{x<1/3} + (6x-4)\cdot {\bf 1}_{x>2/3}|$ $-log(\eta)(-3) \cdot 1_{x<1/3}$ + (6) $\cdot 1_{x>2/3}$
- This is a theoretical setup where we know V^*

 QQQ

What do the projections look like in a 1D space?

Figure: Upper and lower projections error for 16 basis functions

What do the projections look like in a 1D space?

Figure: Near-perfect approximation with upper and lower projections

Solving the MDP with reduced VI (1D)

 $\tau = (1-\gamma)^{-1}$ (larger $=$ large horizon) ρ is such that discount factor is γ^{ρ}

(a) 16 affine bases, nonconvex reward

(b) 100 affine bases, non-convex reward

Figure: Solving a control problem with reduced VI

The setup is now a 2D state space with $|{\cal S}| = 2^5 \times 2^5$ We adapt the rewards to be multivariable functions $R(x, y)$ This is already more realistic for control problems

64 basis functions

(a) Approximate Value function (b) Optimal Value function

Figure: Max-plus approximation of V with a 2D state space

←□

Performance plots

Now let's look at the convergence $||V^* - V_{approx}||$ as a function of the number of basis functions

Figure: Convergence plots

[Motivation and Scope](#page-2-0)

- [Primer on Tropical Algebra](#page-8-0)
- [Max-Plus Approximation of the Value Function](#page-12-0)

[Implementations](#page-22-0)

4 0 8

This is very theoretical but some recent papers looked at extensions:

- When the MDP does not come from an underlying continuous-time problem, the quantity $\langle z, Tw \rangle$ can be hard to compute. Berthier and Bach [\[3\]](#page-33-3) use a gradient ascent technique to use Reduced Value Iteration on MDPs.
- Gonçalves [\[4\]](#page-33-4) discusses extension to online learning. Possible extensions:
	- Q-values! What if we approximate $Q(s, a)$ with tropical linear projections?
	- what about stochastic MDPs?

 QQ

References

- [1] Francis R. Bach. Max-plus matching pursuit for deterministic markov decision processes. CoRR, abs/1906.08524, 2019. URL <http://arxiv.org/abs/1906.08524>.
- [2] Marianne Akian, Stéphane Gaubert, and Asma Lakhoua. The max-plus finite element method for solving deterministic optimal control problems: Basic properties and convergence analysis. SIAM Journal on Control and Optimization, 47(2):817–848, 2008. doi: 10.1137/060655286. URL <https://doi.org/10.1137/060655286>.
- [3] Eloïse Berthier and Francis Bach. Max-plus linear approximations for deterministic continuous-state markov decision processes. IEEE Control Systems Letters, 4(3):767–772, 2020.
- [4] Vinicius Mariano Goncalves. Max-plus approximation for reinforcement learning. Automatica, 129:109623, 2021. ISSN 0005-1098. doi: https://doi.org/10.1016/j.automatica.2021.109623. URL [https://www.sciencedirect.com/science/article/pii/](https://www.sciencedirect.com/science/article/pii/S0005109821001436) [S0005109821001436](https://www.sciencedirect.com/science/article/pii/S0005109821001436). イロト イ押ト イヨト イヨト Ω

Emile Esmaili (Columbia University) [Tropical Algebra for RL](#page-0-0) Cotober 27, 2023 34/34