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Opening Remarks

This project is
@ Part theory and details on existing literature with proofs

@ Part implementation of papers’ results
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Motivation and Scope

We look into the issue of control problems with large deterministic
state-spaces (ie robotics)

Consider a continuous-state MDP (discrete-time, discrete-control). We
want to discretize it into a finite MDP (discrete-state), e.g. to
approximate the value function with value iteration.

Problem: A naive discretization has no notion of spatial proximity, hence
we would need a very large state-discretization, not even fitting in memory
for problems of moderate dimensions.
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Motivation and Scope

We consider a deterministic, time-homogeneous, infinite-horizon,
discounted MDP defined by:

@ a state space S,

an action space A,

°
@ a bounded reward function r : S x A — [-R, R],
@ dynamics ¢(-): Sx A— S,
@ and a discount factor 0 <y < 1.
We make the following assumptions:
© The state space S is a bounded subset of RY (d > 1).

@ The action space A is finite.
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Value lteration

The optimal value function V* : S — R corresponds to an optimal policy
7* ' § — A maximizing the cumulative discounted reward. The greedy
policy m corresponding to a value function V is then:

n(s) € argmax[r(s, 3) + 7 V(@a(s))]

The value iteration algorithm consists in computing V* as the unique fixed
point of the Bellman operator T : R — R*:

TV(s) 1= max [r(s,3) +7V(9a(5))].

The value iteration algorithm iteratively computes the recursion

Vi1 = T(Vk) that converges to V*, with a linear rate since T is strictly
contractive with factor v < 1. However, if S is a finite set, it requires
O(|A| - |S|) computations and the storage of O(|S|) values of Vj at each
step.
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Value Function Approximation

We have seen a regular linear parameterization of the value function, as
V(s)= > aw-w(s)

where W is a set of basis functions w : § — R.

Idea: What if we use a 'tropical’ or max-plus linear approximation
instead?
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Primer on Tropical Algebra

In an exotic country, children are taught that:

“a+ b =max(a,b) ; “"ax b’ =a+b

So
e "2+3"=3
e 2x3 =5
e “5/2" =3
0 "2 =" x2x2" =6
e "y/—1"=-05

10/34
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Primer on Tropical Algebra

The max-plus semiring (Rmax, ®, ®) is the set R U {—o0}, equipped with
the two operations:

x @y = max{x,y}

XQy=x+y

The relations @ and ® are associative and commutative. The 0 element
for @ is —oo, which is such that:

X @ (—00) = max{x, —oo} = x

The 1 element for ® is 0, such that x ® 0 = x + 0 = x. All non-zero
elements (i.e., different from —o0) have an inverse for ®, equal to —x
(hence making the structure a semifield):

An interesting property is that the semiring is idempotent:

x @ x = max{x, x} = x
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Max-Plus Linear Algebra

Consider the following linear system, with unknown z = (x,y) € R?:

(—14 i> ’ @ - @

Unrolling the max-plus notations, this is equivalent to the following system
of equations:

max{x,y +2} =1
max{x —4,y} =2

The first line is equivalent to:
(x=landy+2<1l)or(x<landy+2=1)

with a similar condition for the second line:
(x—4=2andy<2)or(x—4<2andy=2).
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e Max-Plus Approximation of the Value Function
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Max-Plus linearity of Bellman backup

The structure of the Bellman operator T : R® — R® is naturally

compatible with max-plus algebra. It is max-plus additive and
homogeneous:

Bellman backup TV(s) is MaxPlus linear

Proof:
T(V D Vo) = T(max{ V, Vo}) = max{ TV, T\/o} =TV TW

T(caV)=T(c+V)=yc+ TV =c*"TV.
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Max Plus linear combinations

Let W be a finite dictionary of functions w : § — R.
For a € R, we define the max-plus linear combinations:

V(s) = P a(w) @ w(s) = max [a(w) + w(s)].

wew welW
and we write it more compactly:
V =Wa.
We can also define a dot product:

Vz,w € R®, (z,w) := igg[z(s) + w(s)]
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Max-Plus basis functions

Idea from Bach [1] : the value function can be approximated by a
max-plus linear combination of functions in W.
The functions w(s) form a basis in the max-plus linear approximation of V
Most common dictionaries of functions:

e Smooth: w;(s) = —c||s — si|?

e Lipschitz: w;(s) = —cl|s — s

@ Indicator: w;(s) = {O fse /L_\(Wi)

—o0 otherwise

e Soft indicator: w;(s) = —cdist(s, A(w;))?
Smooth or Lipschitz basis functions are used to approximate value
functions of the same regularity, controlled by c. (Akian et al. [2])

Piecewise constant value functions are good candidates for a discretization.
They are used in Bach [1] to cluster similar states in discrete MDPs.
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Max-Plus Linear Projections

Define the following four operators:
o W :RW = RS, Wa(s) := maxyew[a(w) + w(s)]
o W R - RW, WHV(w) = infees[V(s) — w(s)]
o WT R 5 RW, WTV(w) :=sup,es[V(s) + w(s)]
o W+ RW RS WT+a(s) := mingew[a(w) — w(s)]
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Max-Plus Linear Projections

W acts like a pseudo inverse

We have, for the pointwise partial order on R,
Wa <V < a< WTV, that is:

Vs e S, Wa(s) < V(s)
< VY(s,w) e Sx W, a(w)+ w(s) < V(s)
< VY(s,w) e Sx W, a(w) < V(s)— w(s)
= VYwe W, a(w) < WHV(w).

As shown in Akian et al. [2], WW* = W and WTWT = W+
Therefore W plays a role of pseudo-inverse, and WW ™ the role of
projection on the image of W.
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Max Plus Linear Projections

Idea: Projection on the range of W
Replace Vt+]_ = TVt by Vt+]_ = WW+ Vt

If we consider V; of the form V; = Way, then Vi1 = Waris
with
arr1(w) = WHTWae(w) = minges{max, ew yar(w') + Tw/(s)} — w(s)

Which comes from Max-plus homogeneity of T(Wa)

T(Wa) = @W@Oz) @a’y—l—TW:maXfya—l—TW

This requires to solve at each iteration an infimum problem over S, which
is computationally expensive as O(|S| - |[W/|), which is typically worse than
classical value iteration. Not good!
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Variational Trick

Better Idea from [1]: Use a variational formulation with another basis of
functions Z. Define, similarly to what we did with W:

o ZTV(z) = maxses V(s) + z(s).

o ZT*j(s) = minez B(2) — z(s).
The operator ZT*ZT on functions from S to R is the projection on the
image of ZT+.
The value iteration recursion Vi1 = TV} is replaced by a variational
formulation:

<Z, Vk+1> = <Z, TVk> Vz e Z,

of which we consider the maximal solution in span(W) [2]:
Vigr = WWHZTHZ2H TV,

If Vi = Way, we have the following recursion:
p1 = WHZTH 2T TWay.
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Reduced Value lteration

The operator WTZT+ZTTW : RW — RW decomposes as M o K with
K=Z"W:R" - RZ
M=wtzTt RZ 5 RW

The recursion can be reformulated :

Biea(2) = Kau(2) = sup [2(5) + mag Dawlw) + (3]

= max[yoy(w) + (z, Tw)]

() = Miisa(w) = inf |-w(s) + mig Fuia(2) - 2(5)]

= min[Bis1(2) - (2, w)]
zeZ
We can then recover the optimal Value function as

V* = Wa
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Reduced Value Iteration: Convergence guarantee

Proposition 1 from Bach [1]

The operator T = W+ZT+ZT T is y-contractive and has a unique fixed
point V.
If ||WWHV* — V|| <7 and ||ZTZTV* — V*||so < 1, then

2
||Voo - V*Hoo < 1T777
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Implementations

e We reproduce and implement the results from Bach [1]

@ and add other illustrations
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Implementing Reduced VI from [1]

First in a 1D state-space.
We reproduce the results of [1] using the following setup:

|S| = 28,|A| = 2, Discretized MDP from continuous control problem

discount factor for continous control problem n = 0.5, for MDP
v =n/|S|

convex and non-convex reward functions

convex reward is given by
R(x) = (1 = 3x) - L3 + (6x —4) - 1,503

—log(n)(—3) - 1ic1/3+ (6) - Lisos3
This is a theoretical setup where we know V*
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What do the projections look like in a 1D space?

Piecewise affine

Piecewise affine —
2t |—V 1.57 |—ww*v
—WWHV —7T+7Ty

1.5 — ST Ty 1 A

1 0.5
0.5

0
0
0 0.5 1
0 0.5 1 (b) 16 affine bases, non-convex

(a) 16 affine bases, convex reward reward

Figure: Upper and lower projections error for 16 basis functions
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What do the projections look like in a 1D space?

Piecewise affine

Piecewise affine —
2t |—V 1.57 |—ww*v
—WWHV —7T+7Ty

1.5 _ZT+ZT V 1

1 0.5
0.5

0
0
0 0.5 1
0 0.5 1 (b) 100 affine bases, non-convex

(a) 100 affine bases, convex reward reward

Figure: Near-perfect approximation with upper and lower projections
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Solving the MDP with reduced VI (1D)

7 = (1 — )~ (larger = large horizon)
p is such that discount factor is v*

16 clusters: MDP p=4 Tp=131 100 clusters: MDP p=32 7 =17

2 P d
15 —V —V'

v 15 —

1 1 o
0.5 0.5

0 0

0 0.5 1 0 0.5 1

(a) 16 affine bases, nonconvex (b) 100 affine bases, non-convex
reward reward

Figure: Solving a control problem with reduced VI
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Reduced VI: 2D state space

The setup is now a 2D state space with |S| = 2% x 2°
We adapt the rewards to be multivariable functions R(x, y)
This is already more realistic for control problems
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Reduced VI: 2D state space

64 basis functions

Approximate value function Optimal value function
o‘::t::o:::‘o
OO0 3 -3
2 2
1 1
1
0 0
(a) Approximate Value function (b) Optimal Value function

Figure: Max-plus approximation of V with a 2D state space
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Performance plots

Now let's look at the convergence ||V* — V,pprox|| as a function of the
number of basis functions

1D convergence

2D convergence

-3 -4.5
= _ 5
> .
34 ; 55
T -6
-5
-6.5
0 5 10 15 0 2 4 6 8
Iogz(# of basis functions) log,,(# of basis functions)
(a) 1D state-space (b) 2D state-space

Figure: Convergence plots
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Extensions

This is very theoretical but some recent papers looked at extensions:

@ When the MDP does not come from an underlying continuous-time
problem, the quantity (z, Tw) can be hard to compute. Berthier and
Bach [3] use a gradient ascent technique to use Reduced Value
Iteration on MDPs.

e Gongalves [4] discusses extension to online learning. Possible
extensions:

o Q-values! What if we approximate Q(s, a) with tropical linear
projections?
e what about stochastic MDPs?
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